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A statistical theory has been developed which allows the homopolymeric block length to be obtained
in a statistical copolymer with finite length. The results were tested numerically by a Monte Carlo
method. Application to a class of copolyether—estereamides has been made.

INTRODUCTION

Some years ago polymer material technologists focussed
their attention on so-called thermoplastic elastomers. Such
elastomers are copolymers which yield two phases: the

first, called the *hard phase’, can be formed by crystalline,
paracrystalline or glassy amorphous material and impairs
the dimensional stability of the second phase called the
‘soft phase’ responsible for the elastomeric behaviour. The
monomers, which constitute the copolymer, are grouped

in blocks as a consequence of sequential homopolymerization
or statistical copolymerization. The homopolymeric biock
lengths and their distribution influence the copolymer pro-
perties'. It is generally assumed? that the hard and soft seg-
ments, in the case of polycondensation copolymers, are
randomly distributed and in the case of a high degree of
polymerization it is possible to introduce a statistical aver-
age degree of copolymerization. The finite nature of the
chain length makes the definition of the degree of polymer-
ization more difficult because it is necessary to take into
account the termination probability. Up to this time only
the fraction of macromolecules with a given number of blocks
of specified length has been calculated? in finite macromole-
cules. In the present paper the average length of the homo-
polymeric blocks and their distribution in polymers with
relatively low molecular weight has been calculated. The re-
sults, tested by the Monte Carlo method were applied to
polyether—estereamide copolymers developed in our
laboratory?.

THEORETICAL

The copolymer was synthesized by random polymerization
of two bifunctional monomers A and B having the same
reactivity and initial molar concentrations X5 and Xg, res-
pectively. The macromolecules, constituted by a set of A
and B blocks, have the general formula:

[...AyBy ... T

where I and T represent monomers (A or B) which reacted
monofunctionally, Ay; and B); are the ith homopolymer
blocks. Owing to the random distribution of the block
lengths it is reasonable to attempt to define a statistical
average degree of polymerization, 7, so that the general
formula of the average macromolecule should be:
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where k4 and kp are the average length of the A and B
blocks. k4 and kg can be calculated from the equations®:

1 1

. Eg=-—
1 — Pyp 1 —Pgp

1)

EA=

where Ppg is the conditional probability of the occurrence
of a unit g, given that the preceding unit is p. In the case of
infinite chain length®:

Papn=Xa; Pgg=Xg )

To take into account the finite nature of the chain it is
necessary to introduce the termination probability
P1(PaT or Pgr)°. Expression (2) becomes:

Paa=XaA(l - Py); Pgg=Xp(1 — Py) (3)

In order to calculate P 5 and Pgg modified in this manner,
it is convenient to build up a statistical model. Let us take
two urns: the first one contains the initial monofunctional
units A— or B—, generically indicated I, the second one con-
tains the bifunctional units —A— and —B— as well as the
terminal units —A and —B, the last two indicated generically
by T. The relative amounts in the second urn are x4, xg and
xt for the —A—, —B— and T units with x5 + xp +x7 = 1.
The composition of the I and T units coincide with the initial
monomer composition X4 and Xg. To build up a macro-
molecule it is necessary to draw out the initial unit I from
the first urn, then A and B units from the second urn until
a T unit is extracted. After any extraction the compositions
in the urns do not change.

From the material balance the following relations are
obtained:

xpa=(1 —x1)Xa; xp=(1 —x7)Xp 4)
The transition probabilities Py o, Pgg, Pap, Ppa, PaT and

Pgr depend on the second urn composition and these ex-
pressions result:

Pap=Ppa=xp

Pgp=Pap=xp
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PpT=Pgr=xt
The average chain length (equation 1) becomes:

1 1

EA=1 ; k= (5)
— XA 1 —xp

Owing to the distribution of the chain lengths it is possible
to obtain the following species of macromolecules: (i) IT;
(ii) IAp, T; (iii) IB, T; (iv) I(Ax B, ), T where only the last
sequence is a true copolymer macromolecule.

The frequency f7 of the species (i) is xT because x rep-
resents the fraction of units, T, in the second urn. The fre-
quencies f, and f3 of the species (ii) and (iii) are given by
the composite probability:

XTXA

m

2= 2, ¥t = o =k
1 XA

similarly, f3 = xgx7kp. For species (ii) and (iii) the average
lengths of the A and B blocks are kK and kg; for the species
(ii):

m
X
3, mee
1
o0 1 —xp

m
XA X
Zm A*T

1

similarly for the species (iii). The frequency, fa, for species

(iv) is:
Jasl-fi—fa—-f3
ie.
fa=1—-x1(1 —xaka — xpkp)

The weight-average molecular weights, M;, of the four
species are:

Mi=M;+My

M2 = Ml + EAMA

Mz =M, +kgMp

My=M; +I7(k_AMA + k_BMB)
where Mj and M are the average molecular weights of the
initial and terminal units and M and Mg are the molecular
weights of the A and B units.

The numerical molecular weight M,, is:

M, = xtMq + xpxpkaMy + xpxpgkgM; +

[1 —xp(1 +xpka +xpkp)] M4 (6)

In equation (6) there are two terms, n and x, which must
be determined. In order that the equation (6) be solved, it
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is necessary to find a relation between xT and n, linearly
independent of equation (6). This can be obtained from
the balance of monomers T with respect to the number of
monomers A + B+ T. Hence we obtain:

1
1+ foka + f3kp + f4(Ra +kp)n

and finally the required equation:

__ (/xp) — 1 —xp(xpKa2 + xpkp?) ™
n =
(KA +Eg) [1 —x1(1 + xpk7 + xpkp)]

Knowing X5 and Xg and using the equations (4), (5), (6)
and (7) xT and n are completely determined and conse-
quently so are P 5 and Pgp.

From a practical point of view it is useful to know the
following: (a) the probability, Pp(k), that the length of a
block of units A is &; (b) the mole fraction, xA(k), of units
A (with respect to the total amount of units A) included in
blocks of length k; (c) the integral curve of xs(k); (d) the
weight fraction W (k) of units A (in relation to the total
number of the units present in the polymer) included in
blocks of length &; () the integral curve of Wa(k).

These are given by:

(@) Pa=(1-xppp!

kPA(k
() xak)= :—AL = kxpF=1(1 — xp)?

2., kP

i
© 2, xa®)= k(1 — xaleak =1+ xpt ®)

k
Maxalk

@ Walo)= xaMaxa(k)

xAMp + xgMp + x7 (M + M)

oo

@ D, Wak)=

k

XAMa [k(1 — xp)eak 1+ x4F]

XAMA + XBMB + xT(M[ +MT)

Similar expressions are obtained for B units.

APPLICATIONS AND DISCUSSION

The results obtained so far are of great interest for a deeper
understanding of the behaviour of statistical copolymers.

As an example a copolymer made via transesterification
according to the reaction:

6NT + 6G + PTMEG > —A— + —B—+ [,— +
Ig—+-Tp +-Tg 9)

Where: 6NT=CH,O0CO{ ) CONHICH,},NHCO { I COOCH,
6G = HO(CH,)sOH

PTMEG = HO[(CH3)40] ,H with MW ~ 1000
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Table 1
Theoretical Monte Carlo
Parameter values values
Mn 30000 30375
f 0.038 0.037
fy 0015 0.015
f3 0.078 0.081
fa 0869 0867
ka 141 141
kg 3.06 307
A C
10F
D
B
sk
E
F
J I
O 05 IO
X, {mol ]

Figure 1  Average lengths of A and B blocks and degree of poly-
merization for finite (M, = 20 000} and infinite chain versus initial
monomer composition A, kgeo; B, kg, C, kpe; D, ka; E, n; F, ne

-A-=-CO Y CONHI(CH,)NHCO{ HCOOICH,),0~  (My=494)
-8-=-CO{CONHICH,),NHCO{ ) coo(icH,),01,, (m5=1376)

{1 A—=HO(CH)gO— (M, = 117)
I—

Ig— =HO[(CH)40},, (Mg =999)

My =X My, + XpMpy

~Ta=—-AH (M1, =495)
-T { My =XaM1) + XpMTg

~Tg=-BH (Mg=1377)

These systems will be examined.

Owing to the polycondensation process, the macromole-
cules start-and end with glycol groups and reaction (9) is
always correct.

The use of equations (6), (7) and (8) enables us to calcu-
late the parameters in which we are interested, e.g. 1, k4, kg,
W etc., for different M, and X 5. In order to check the
validity of the analysis outlined in the theoretical section,
the results were tested numerically by a Monte Carlo method
for the copolymers considered. To apply it to the present

problem, the computer was used to construct a large number
of copolymer molecules (5000 turned out to be an adequate
number) in accordance with an appropriate termination prob-
ability and a fixed X 5. The simulation gave the &k, kg, f;
and M,,. In Table 1 the results obtained by Monte Carlo
calculations are compared with the theoretical results for

X4 = 0.3 and M,, =30 000. The agreement is quite satisfac-
tory.

For the copolymers under examination the influence of
the finite nature of the chain length is particularly signifi-
cant for M,, < 30000.

In Figure 1, k5, kg and n for M, = 20 000 as a function
of X and those for infinite chain length, indicated kK w,
kp- and n are reported. A point of great interest is to dis-
cover the fraction (mole or weight fraction) of macromole-
cules of different species. For instance the weight frequency
distribution of true copolymer, Wy versus X o is plotted in
Figure 2 for different M,,. The true copolymer exhibits a
weight fraction ranging from 0.55 to 0.85 of the polymeric
mass for M, = 10000 and 0.1 < X <0.3.

Similarly, with other copolymers®, the crystallization is
due to the hard units (—A—) belonging to blocks having k
or more units; consequently it is useful to know the weight
fraction of the —A— units with respect to the polymer
weight.

In Figure 3

oo

D WA

k

is plotted versus k for different X o content. Our copolymer
and similar classes of copolymers’ are peculiar in the sense
that the —A— and ~B— units, which build up the hard and
soft phases, contain one identical sequence derived from
biesters. This implies, at first, that a block of —A— units

) /
A
B
C
¥ ost
o 2 ’ 4

-4
M, x 10

Figure 2 Copolymer weight frequency distribution, w, versus M,
for different initial monomer compositions A, Xp = 0.3; B, Xp =
0.2;C, Xp =01
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Figure 3 Integral curves of WA(k) for different monomer com-

positions versus k. A, Xp =09; B, Xpa =0.1. M, =20000

—A—

o —B—

O F
N
by o5 |
0] o5 IO

Figure 4 Effective hard phase weight content versus initial mono-
mer compaosition

o
I

: O
_ | I ] .
—O—-CH2CH2CH2§CH2CH2CH2—O-—s—C—Q—C—NH(CH2)6—C—O—C——O—-CH2CH2CH2;CH2—~O—

—A—

does not end with the last —A— unit, but continues, incor-
porating the initial part of a —B— unit according to the
scheme scheme shown above.

This is of some importance because the initial part of the
—B— block can be crystallized with one preceding —A—
block and this is relevant if the number of consecutive —A—
units necessary for crystallization is small. In this way the
effective hard content is always higher than the theoretical
content. We note that isolated —A— units are incorporated
in the —B— blocks when the length of the —B~- blocks is
two or more units. In order to quantify the weight fraction,
Hr, of the effective hard phase content, it is sufficient to
note that for each molecule of the type (a), (b), (¢) and
(d), there are 1, ks + 1, kg +1and n(ks +kg) +1 —A—
units. Therefore:

My
Hy =1171_{f1 tfrkat ) +f3kp + 1)+

fa[n(ka + k) + 1]}

The effective hard phase weight content as a function of

X for M, = 20000 is reported in Figure 4. Similarly, the
effective weight fraction, Hy, of —A— units present in blocks
of length k will be:
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KM
Hp= o (1 = xp)2(k — DxaF=2[f2Kkp + fakka)
n
withk # 1

M
H f {f1 +f3(Rp + 1) +fa [7(Rp — 1) + 1]}

n

with k = 1 where

zk Hk=HT
1
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